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Summary of the talk

Motivating Example: Generalized Linear Mixed Model.

Bayesian inference when the likelihood is intractable but can be
estimated unbiasedly.

Inference using the unbiased likelihood and either Importance
Sampling Squared or MCMC on the parameters.

In either case we quantify an optimal precision for the estimator of
the log likelihood.

We compare the the efficiency of the estimator based on the estimated
likelihood against the corresponding scheme with a known likelihood.

We make specific assumptions (which we can justify) on the error in
the estimator of the log likelihood.
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Generalised multinomial logit application; Utility Analysis

The generalised multinomial logit (GMNL) model of Fiebig, Keane,
Louviere , wasi (2010) specifies the utility of individual i from
choosing alternative j at occasion t is

Uijt = β0ij +
K

∑
k=1

βkixkijt + ε ijt ,

i = 1, . . . , I j = 1, . . . , J t = 1, . . . , T ,

where xkijt are observed attributes for choice j , βki are heterogenous
utility weights and ε ijt are i.i.d. idiosyncratic errors following the
extreme value distribution.
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Choice Probabilities

As in the standard multinomial logit model, the choice probability
conditional on the observed attributes and utility weights have the
simple closed form expression. i chooses j at time t,

Pr(i , j , t|Xit , βi ) =
exp(β0ij + ∑K

k=1 βkixkijt)

∑J
h=1 exp(β0ih + ∑K

k=1 βkixkiht)
, (1)

The model for the utility weights is

β0ij = β0j + η0i , η0i ∼ N(0, σ2
0 ),

βki = λi βk + γηki + (1− γ)λiηki , ηki ∼ N(0, σ2
k ), k = 1, . . . , K ,

λi = exp(−δ/2 + δζi ), ζi ∼ N(0, 1),
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Utility weights

The model for the utility weights is

β0ij = β0j + η0i , η0i ∼ N(0, σ2
0 ),

βki = λi βk + γηki + (1− γ)λiηki , ηki ∼ N(0, σ2
k ), k = 1, . . . , K ,

λi = exp(−δ/2 + δζi ), ζi ∼ N(0, 1),

where β0j are alternative specific constants (ASC) and λi are scaling
coefficients. The parameter vector is
θ = (β01, . . . β0J , σ2

0 , β1, . . . , βK , σ2
1 , . . . , σ2

K , δ2, γ)′.
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Empirical Application

We consider an empirical application to the pap smear data set used
in the original paper by Fiebig et al.

In this data set, I = 79 women choose whether or not to have a pap
smear exam (J = 2) on T = 32 choice occasions.

We let the observed choice for individual i at occasion t be yit = 1 if
the woman chooses to take the test and yit = 0 otherwise.

The next table lists the choice attributes and the associated
coefficients.

We normalise the utility of not taking the test to zero.

(Vienna, NOV 22 2013) 6 / 49



Empirical Application

We consider an empirical application to the pap smear data set used
in the original paper by Fiebig et al.

In this data set, I = 79 women choose whether or not to have a pap
smear exam (J = 2) on T = 32 choice occasions.

We let the observed choice for individual i at occasion t be yit = 1 if
the woman chooses to take the test and yit = 0 otherwise.

The next table lists the choice attributes and the associated
coefficients.

We normalise the utility of not taking the test to zero.

(Vienna, NOV 22 2013) 6 / 49



Empirical Application

We consider an empirical application to the pap smear data set used
in the original paper by Fiebig et al.

In this data set, I = 79 women choose whether or not to have a pap
smear exam (J = 2) on T = 32 choice occasions.

We let the observed choice for individual i at occasion t be yit = 1 if
the woman chooses to take the test and yit = 0 otherwise.

The next table lists the choice attributes and the associated
coefficients.

We normalise the utility of not taking the test to zero.

(Vienna, NOV 22 2013) 6 / 49



Empirical Application

We consider an empirical application to the pap smear data set used
in the original paper by Fiebig et al.

In this data set, I = 79 women choose whether or not to have a pap
smear exam (J = 2) on T = 32 choice occasions.

We let the observed choice for individual i at occasion t be yit = 1 if
the woman chooses to take the test and yit = 0 otherwise.

The next table lists the choice attributes and the associated
coefficients.

We normalise the utility of not taking the test to zero.

(Vienna, NOV 22 2013) 6 / 49



Empirical Application

We consider an empirical application to the pap smear data set used
in the original paper by Fiebig et al.

In this data set, I = 79 women choose whether or not to have a pap
smear exam (J = 2) on T = 32 choice occasions.

We let the observed choice for individual i at occasion t be yit = 1 if
the woman chooses to take the test and yit = 0 otherwise.

The next table lists the choice attributes and the associated
coefficients.

We normalise the utility of not taking the test to zero.

(Vienna, NOV 22 2013) 6 / 49



Choice attributes

Table : Choice attributes for the pap smear data set

.

Choice attributes Values Associated parameters

Constant for test 1 β0, σ2
0

Whether you know doctor 0 (no), 1 (yes) β1, σ2
1

Whether doctor is male 0 (no), 1 (yes) β2, σ2
2

Whether test is due 0 (no), 1 (yes) β3, σ2
3

Whether doctor recommends 0 (no), 1 (yes) β4, σ2
4

Test cost {0, 10, 20, 30}/10 β5
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Bayesian Inference

Posterior density

π (θ) = p ( θ| y) = p (y | θ) p (θ)

p (y)

where p (y | θ) p (θ) is known pointwise but p (y) is not.

Wish to estimate ∫
h(θ)π(θ)dθ

MCMC have been used extensively to sample (approximately) from
π(θ).
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MCMC with Intractable Likelihood Function

Consider now the scenario where p (y | θ) cannot be evaluated.

For latent variable models

p (y | θ) =
∫

p (x , y | θ) dx

where p (x , y | θ) is often known but p (y | θ) is not.

More accurately, we know p(y |x , θ) and p(x |θ) and can generate
from p(x |θ).
Standard MCMC approaches consists of sampling from

p ( θ, x | y) = p (x , y | θ) p (θ)

p (y)

by updating successively x and θ.
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MCMC with Intractable Likelihood Function

An alternative approach based on the availability of a non-negative
unbiased likelihood estimator is possible.

In physics, first appeared in Lin, Liu & Sloan (2000). In statistics,
Beaumont (2003), Andrieu, Berthelesen, D., Roberts (2006), Andrieu
& Roberts (2009).

Particle Marginal Metropolis Hastings sampler for state-space models
(Andrieu, D. & Holenstein, 2009, 2010).

There is a nice paper by Andrieu and Vihola (2012) Convergence
properties of pseudo-marginal Markov chain Monte Carlo that is
related to our work.
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MCMC with an Intractable Likelihood Function

Denote by p̂ (y |θ, u) the unbiased non-negative likelihood estimator
function of the r.v. u of density m (u| θ); i.e.

p (y |θ) =
∫

p̂ (y |θ, u)m (u| θ) du

Given (θ, p̂ (y |θ, u)) then sample θ′ ∼ q ( ·| θ), u′ ∼ m ( ·| θ′) and
accept (θ′, p̂ (y |θ′, u′)) with a MH probability.

The MCMC has p ( θ| y) as its marginal distribution whatever the
variance of p̂ (y |θ, u).

(Vienna, NOV 22 2013) 11 / 49



MCMC with an Intractable Likelihood Function

Denote by p̂ (y |θ, u) the unbiased non-negative likelihood estimator
function of the r.v. u of density m (u| θ); i.e.

p (y |θ) =
∫

p̂ (y |θ, u)m (u| θ) du

Given (θ, p̂ (y |θ, u)) then sample θ′ ∼ q ( ·| θ), u′ ∼ m ( ·| θ′) and
accept (θ′, p̂ (y |θ′, u′)) with a MH probability.

The MCMC has p ( θ| y) as its marginal distribution whatever the
variance of p̂ (y |θ, u).

(Vienna, NOV 22 2013) 11 / 49



MCMC with an Intractable Likelihood Function

Denote by p̂ (y |θ, u) the unbiased non-negative likelihood estimator
function of the r.v. u of density m (u| θ); i.e.

p (y |θ) =
∫

p̂ (y |θ, u)m (u| θ) du

Given (θ, p̂ (y |θ, u)) then sample θ′ ∼ q ( ·| θ), u′ ∼ m ( ·| θ′) and
accept (θ′, p̂ (y |θ′, u′)) with a MH probability.

The MCMC has p ( θ| y) as its marginal distribution whatever the
variance of p̂ (y |θ, u).

(Vienna, NOV 22 2013) 11 / 49



MCMC with Intractable Likelihood Function

This algorithm is a M-H sampler targeting

π̂ (θ, u) ∝ p̂ (y |θ, u)m (u| θ) p (θ)

using the proposal
q
(

θ′
∣∣ θ
)

m
(

u′
∣∣ θ′
)

.

Crucially unbiasedness provides that the marginal is:

π̂ (θ) = π (θ) = p ( θ| y) .
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Importance Sampling Estimator

Assume that

p (y | θ) =
∫

p (x , y | θ) dx .

Let g(x |y , θ) be an Importance Sampling (IS) density then

p̂(y |θ, u) =
1

N

N

∑
k=1

ω(xk , θ),

where the xk are iid samples from g(x |y ; θ), u is the vector of r.v.
used to generate the xk and

ω(x , θ) =
p (x , y | θ)
g(x |y ; θ)

.

p̂(y |θ, u) is unbiased of variance inversely proportional to N.
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Importance Sampling Estimator: Panel DATA

Assume that

p(y |θ) =
T

∏
t=1

p(yt |θ)

p(yt |θ) =
∫

p(yt |xt ; θ)p(xt |θ)dxt .

Let gt(xt |yt , θ) be an Importance Sampling (IS) density. Then

p̂(yt |θ, ut) =
1

N

N

∑
k=1

ω(xk
t , θ),

where the xk
t are iid samples from g(xt |yt ; θ), u is the vector of r.v.

used to generate the xk
t and

ω(xt , θ) =
p(yt |xt ; θ)p(xt ; θ)

g(xt |yt ; θ)
.
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Importance Sampling Estimator: Panel DATA II

Assume that

p̂(y |θ) =
T

∏
t=1

p̂(yt |θ)

=
T

∏
t=1

1

N

Nt

∑
k=1

ω(xk
t , θ),

p̂(yt |θ, ut) is unbiased of variance inversely proportional to Nt .
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Importance sampling squared. I

Let h(θ) be a function of θ. We wish to estimate

∆(h) =
∫

h(θ)p(θ|y)dθ

= I (h)/I (1)

where

I (h) =
∫

h(θ)p(y |θ)p(θ)dθ

Define,

Ĩ (h) =
∫

h(θ)p̂(y |θ, u)p(θ)dθ
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Importance sampling squared. II

Let q(θ) be an importance density.

Ĩ (h) =
∫

h(θ)p̂(y |θ, u)p(θ)dθ =
∫

h(θ)
p̂(y |θ, u)p(θ)

q(θ)
q(θ)dθ

Then

Î (h) =
1

M

M

∑
j=1

h(θj )
p̂(y |θj , u)p(θj )

q(θj )

where θj ∼ q(θ), is the Importance squared estimator of I (h).

∆̂(h) =
Î (h)

Î (1)
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Sequential Monte Carlo Estimator
Handling Time Series

A state space model is a complex latent variable model.

p(y , x |θ) = p(y |x ; θ)p(x |θ)

p(y |x ; θ)
T

∏
t=1

g(yt |xt ; θ)

p(x |θ) = f (x1|θ)
T

∏
t=2

f (xt |xt−1; θ)
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SMC for state space models

p(y |θ) = p(y1|θ)
T

∏
t=2

p(yt |yt−1; θ)

Omit θ for convenience.

p(yt |yt−1) =
∫ (∫

w(xt , xt−1)g(xt |xt−1)dxt

)
p(xt−1|y1:t−1)dxt−1

w(xt , xt − 1) =
p(yt |xt)p(xt |xt−1)

g(xt |xt−1)
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SMC II

If we ”know” p(xt−1|y1:t−1) and have samples x j
t−1, j = 1, . . . , M

from it, then we can generate x j
t from g(xt |xt−1) and

p̂(yt |yt−1) =
1

M

M

∑
j=1

w(x j
t , x j

t−1)

p̂(y |θ) =
T

∏
t=1

p̂(yt |yt−1; θ)

=
T

∏
t=1

1

M

M

∑
j=1

w(x j
t , x j

t−1; θ)
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SMC III

p̂(y |θ) =
T

∏
t=1

p̂(yt |yt−1; θ)

=
T

∏
t=1

1

M

M

∑
j=1

w(x j
t , x j

t−1; θ)

Note that p̂(y |θ) is again unbiased. So SMC is another example of
estimating a likelihood unbiasedly.
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Inference for Non-linear Models

We consider non-linear state space models (West and Harrison,
Harvey). A classic highly non-linear model from Kitagawa (1996),

yt =
1

20
x2
t + wt , wt

i.i.d.∼ N
(
0, σ2

W

)

xt =
1

2
xt−1 + 25

xt−1
1 + x2

t−1
+ 8 cos(1.2t) + vt , vt

i.i.d.∼ N
(
0, σ2

V

)
,

We follow Andrieu 2009 in having an initial distribution x1 ∼ N(0, 5)
and taking σ2

V = 10, and σ2
W = 10, with T = 200.

Difficult/Expensive to perform standard MCMC.

We sample from p ( θ| y1:T ) using a Metropolis-Hastings sampler
where p (y1:T | θ) is estimated unbiasedly using a particle filter. We
vary N and use random walk proposals for log σV , log σW . We use
100,000 MCMC steps.
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Autocorrelation plots of parameters for Kitagawa model
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Figure : Autocorrelation of σV and σW of the MH sampler for various N in the
PF
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How to Select the Number of Samples

A key issue from a practical point of view is how to select N?

If N is too small, then the algorithm mixes poorly and will require
many MCMC iterations.

If N is too large, then each MCMC iteration or IS step is expensive.

Aim: We would like to provide guidelines on how to select N
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MCMC with Intractable Likelihood Function

Let z = log p̂N (y |θ, u)− log p(y |θ) be the error in the log-likelihood.

The proposal from which z arises is denoted gN(z |θ).
We can rewrite the extended target

π̂N(θ, z) = π(θ) exp(z)gN(z |θ)

which is directly related to π̂N(θ, u) through the many-to-one
transformation from u to z .
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Inefficiency Measure

We wish to estimate

µh = Eπ [h(θ)] by µ̂h,n = n−1
n

∑
j=1

h(θj ).

Then the IACT or inefficiency of the Markov chain IFh is given by

IFh =
Vπ(µ̂h,n)

Vπ(h)/n

The IACT, IFh, quantifies the factor by which we need to increase the
number of samples from the Markov chain relative to using iid
samples from π(θ) to achieve a given precision.

(Vienna, NOV 22 2013) 26 / 49



Inefficiency Measure

We wish to estimate

µh = Eπ [h(θ)] by µ̂h,n = n−1
n

∑
j=1

h(θj ).

Then the IACT or inefficiency of the Markov chain IFh is given by

IFh =
Vπ(µ̂h,n)

Vπ(h)/n

The IACT, IFh, quantifies the factor by which we need to increase the
number of samples from the Markov chain relative to using iid
samples from π(θ) to achieve a given precision.

(Vienna, NOV 22 2013) 26 / 49



Making Assumptions to Move Forward

Let z = log p̂N(y |θ, u)− log p(y |θ) be the error in the estimator of the log
likelihood.
Assumptions.

We assume that z is normally distributed. This implies that the
”prior” density of z is

gN(z |θ) = φ
(
z ;−γ2(θ)/2N, γ2(θ)/N

)
and the ”posterior” density is

πN(z |θ) = exp(z)gN(z |θ) = φ
(
z ; γ2(θ)/2N, γ2(θ)/N

)
where φ(z ; a, b2) is a univariate normal of mean a, variance b2.

For a given value of σ2 we set N = Nσ2(θ) = γ(θ)2/σ2.
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Consequences of the Assumptions

Under these assumptions,

Both gN(z |θ) and πN(z |θ) are functions of σ2 only and we write
gN(z |θ) and πN(z |θ) as

g(z |σ2) = φ(z ;−σ2/2, σ2), π(z |σ2) = φ(z ; σ2/2, σ2).

θ and z are independent under π̂N(θ, z).

So everything just depends on σ, which is the variance of Z , i.e., the
variance of the log likelihood estimator.
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Main Result: Computing Time

We would like to choose σ minimize computing time for a give level
of precision or inefficiency.

The optimal value of σ is about 1.

If we make σ much bigger than 1 than we get really high computing
time for a given inefficiency.

If we make σ very small, i.e., very high number of particles, then we
waste N.

If the proposal for θ is very good, then we want σ smaller. If the
proposal is not very good, optimal σ will be larger.
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Relative Upper Bounds on Inefficiency and Computing
Time
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Figure : RCT U
h (top) and RIF U

h (bottom) against 1/σ2 (left) and σ (right).

Different values of IFEX
h are shown on each plot.
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Empirical vs Asymptotic Distribution of Log-Likelihood
Estimator
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Figure : Histograms of proposed (red) and accepted (pink) values of z in
PMCMC scheme. Overlayed are Gaussian pdfs from our simplifying Assumption
for a target of σ = 0.92.
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Importance sampling Squared

Under the same assumptions as before, let VIS (φ) be the variance of
the IS estimator assuming that we use the exact likelihood for a given
σ2 (variance of the log likelihood).

Let VIS2(φ, σ2) be the variance of the IS squared estimator for a
given σ2 (variance of the log likelihood estimator).

Then, define the inefficiency of IS-squared.

IFIS2(σ2) =
VIS2(φ, σ2)

VIS (φ)

= exp(σ2)

Define Computing Time

CTIS2 =
IFIS2(σ2)

σ2

Optimum at σ2 = 1.
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Importance Sampling Squared II

Above we assume that there is no overhead in obtaining the
important sampling squared estimator and targeting the variance to
be 1. Thus cost is proportional to the number of particles N.

If there is also a fixed cost then that must also be taken into account.

Let σ2(θ) = γ(θ)2/N be the variance of the log likelihood.

The computing time for IS2 is

CTIS2 = exp(γ2(θ)/N)(τ1 + τ2N)

which is minimized at Nopt(θ).
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Generalised multinomial logit application; Utility Analysis

The generalised multinomial logit (GMNL) model of Fiebig, Keane,
Louviere , wasi (2010) specifies the utility of individual i from
choosing alternative j at occasion t is

Uijt = β0ij +
K

∑
k=1

βkixkijt + ε ijt ,

i = 1, . . . , I j = 1, . . . , J t = 1, . . . , T ,

where xkijt are observed attributes for choice j , βki are heterogenous
utility weights and ε ijt are i.i.d. idiosyncratic errors following the
extreme value distribution.
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Choice Probabilities

As in the standard multinomial logit model, the choice probability
conditional on the observed attributes and utility weights have the
simple closed form expression. i chooses j at time t,

Pr(i , j , t|Xit , βi ) =
exp(β0ij + ∑K

k=1 βkixkijt)

∑J
h=1 exp(β0ih + ∑K

k=1 βkixkiht)
, (2)

The model for the utility weights is

β0ij = β0j + η0i , η0i ∼ N(0, σ2
0 ),

βki = λi βk + γηki + (1− γ)λiηki , ηki ∼ N(0, σ2
k ), k = 1, . . . , K ,

λi = exp(−δ/2 + δζi ), ζi ∼ N(0, 1),

where β0j are alternative specific constants (ASC) and λi are scaling
coefficients. The parameter vector is
θ = (β01, . . . β0J , σ2

0 , β1, . . . , βK , σ2
1 , . . . , σ2

K , δ2, γ)′.
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0 , β1, . . . , βK , σ2
1 , . . . , σ2

K , δ2, γ)′.

(Vienna, NOV 22 2013) 35 / 49



Empirical Application

We consider an empirical application to the pap smear data set used in the
original paper by Fiebig et al. In this data set, I = 79 women choose
whether or not to have a pap smear exam (J = 2) on T = 32 choice
occasions. We let the observed choice for individual i at occasion t be
yit = 1 if the woman chooses to take the test and yit = 0 otherwise. The
next table lists the choice attributes and the associated coefficients. We
impose the restriction that σ2

5 = 0 in our illustration since we have not
found evidence of heterogeneity for this attribute beyond the scaling effect.
We normalise the utility of not taking the test to zero.
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Choice attributes

Table : Choice attributes for the pap smear data set

.

Choice attributes Values Associated parameters

Constant for test 1 β0, σ2
0

Whether you know doctor 0 (no), 1 (yes) β1, σ2
1

Whether doctor is male 0 (no), 1 (yes) β2, σ2
2

Whether test is due 0 (no), 1 (yes) β3, σ2
3

Whether doctor recommends 0 (no), 1 (yes) β4, σ2
4

Test cost {0, 10, 20, 30}/10 β5
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Likelihood Evaluation

Table : Generalized multinomial logit - log-likelihood evaluation
for the parameters sampled from the mixture of multivariate t
proposal.

The table shows the average variance, skewness and kurtosis of

log-likelihood estimates 1,000 several draws from the importance

density for the model parameters. The JB rejections row report the

proportion of replications in which the Jarque-Bera tests rejects the

null hypothesis of normality of the log-likelihood estimates at the

5% level.

N = 10, 000 N = 20, 000 σ2 ≈ 1
Variance 1.661 0.856 1.024
Relative Var. 1.940 1.000 1.197
Skewness 0.008 0.001 -0.038
Kurtosis 2.955 2.972 3.003
JB rejections (5%) 0.059 0.059 0.055
Time (sec) 1.377 2.836 2.070
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Distribution of log likelihood standard deviation

(a) Targeting a stan-
dard deviation of 1 on
average

(b) Adapting the
number of impor-
tance samples to
target a log-likelihood
standard deviation of
1 for each parameter

(c) Adapting the
number of impor-
tance samples to
target the optimal
log-likelihood stan-
dard deviation for
each parameter

Figure : Distribution of the log-likelihood standard deviation across different
draws of the importance density for the parameters and different schemes to
select the number of importance samples for estimating the likelihood.
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Comparing different implementations
Table : Generalised multinomial logit - relative time normalised
variances for posterior inference.

The table shows the relative variances for IS2 for different numbers of importance samples used

for estimating the likelihood.

N=1,000 N=2,000 N=3,000 N=4,000 Nθ (σ ≈ 1) Nθ (optimal)
β0 1.234 1.000 0.746 0.841 0.890 0.572
β1 1.132 1.000 0.881 0.787 0.704 0.620
β2 0.991 1.000 0.768 0.753 0.688 0.711
β3 0.776 1.000 0.827 0.692 0.590 0.640
β4 0.937 1.000 0.840 0.764 0.684 0.679
β5 1.099 1.000 0.762 0.740 0.766 0.673
σ0 1.225 1.000 0.679 0.729 0.814 0.679
σ1 0.776 1.000 1.735 1.356 0.553 0.483
σ2 1.192 1.000 0.900 0.816 0.615 0.919
σ3 0.996 1.000 0.748 0.697 0.580 0.655
σ4 2.080 1.000 0.974 0.841 0.815 0.871
Average 1.120 1.000 0.864 0.798 0.708 0.682
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Discussion

We have provided an approximate analysis of MCMC using unbiased
likelihood estimator.

We have placed very weak assumptions on the underlying (known
likelihood) chain (reversible)).

The (asym) assumptions on the estimator error appears reasonable.

For a general proposal and under simplifying assumptions on the
likelihood estimator, we can get guidelines on how to select σ: as long
as σ is around 1 then you are fine.
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Nonlinear structural models

In general, an economic model with optimising agents and rational
expectations can be written in the form

EtF (ct+1, ct , kt , kt−1, zt , zt−1, ut | θ) = 0 (3)

where Et denotes an expectation conditional on date t information;

ct is a vector of choice variables (including forward-looking variables
and jump variables);

kt is a vector of endogenous predetermined variables,

zt−1 is a vector of exogenous forcing variables, and ut is a vector of
independently and identically distributed (iid) shocks.

θ is a vector of parameters
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State space form

Let xt = (ct , kt , zt), and yt the vector of observable variables in
period t;

we use a solution of the form

yt = Zxt + ηt

xt = h(xt−1, ut) (4)

for some function h(·), where Z is a selection matrix of ones and
zeros and ηt is observational noise.
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Second Order Approximation

Taking a second-order approximation, e.g. schmitt and grohe 2004,
gives a system in the form

xt = d + Ext−1 + Fut +
(
I ⊗ x ′t−1

)
Gxt−1

+
(
I ⊗ x ′t−1

)
Hut +

(
I ⊗ u′t

)
Jut .

E and F are the coefficient matrices from the first-order
approximation of the model,

d is a correction for volatility that does not appear in the first-order
approximation

The matrix G contains coefficients on the squares and cross-products
of the model’s endogenous variables;

the matrix H has coefficients for interaction terms between lagged
endogenous variables and current-period shocks;

and the matrix J relates to squares and cross-products of the shocks.
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Auxiliary Disturbance Particle Filter

We propose a new particle filter for this problem. The auxiliary
disturbance particle. See Hall, Pitt and Kohn (2013).
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Application: Asset pricing with Habits

the representative agent’s consumption process is

∆ log Ct = g + νt , (5)

ν ∼ N(0, σ2). g is the long run average growth rate of real
consumption, and νt is a transitory shock to income in period t.

The agent’s utility function is given by

Ut = Et

∞

∑
h=0

(βt+h)
h (Ct+h − Xt+h)

1−γ

1− γ
, (6)

where Xt is the (external) habit stock, interpreted as the minimum
level of consumption required to maintain a well-defined utility (i.e.,
the household must ensure that Ct > Xt).

The intertemporal discount factor βt measures impatience to
consume in period t, and the parameter γ controls risk aversion.
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Application: Asset pricing with Habits II

To close the model, one must specify a law of motion for Xt .
Convenient to do so by defining the surplus consumption ratio St , and
the deviation s̃t of log St from its mean S , by

St = (Ct − Xt)/Ct and s̃t = log St − log S

The law of motion of s̃t is assumed to be

s̃t = φs̃t−1 + (S
−1√

1− 2s̃t−1 − 1)νt , (7)

Then the equilibrium price-dividend ratio of a financial asset satisfies

Pt

Dt
= βtEt

[
exp [γ(s̃t − s̃t+1) + (1− γ)(g + νt+1)]

(
1 +

Pt+1

Dt+1

)]
,

(8)
where βt is the intertemporal discount factor in period t.
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Data

We apply the model to observations of growth in the S&P500
price-dividend ratio and US consumption using quarterly observations
from 1950 to 2011, a total of 248 datapoints.

The S&P500 series is from shiller 2006, while the consumption series
is the seasonally adjusted real personal consumption expenditure
series from the Bureau of Economic Analysis (series code PCECC96).
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