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Nowcasting

Maintaining “real time" estimates of infrequently observed time series.
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Predicting the present

» US weekly initial claims
for unemployment.

> Recession leading
indicator.

» Can we learn this week's
number before it is
released?

» We'd need a real time
signal correlated with
the outcome.
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Google searches are a real time indicator of public interest
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Google searches are a real time indicator of public interest
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Google Trends and Google Correlate

Individual search queries

Google correlate can provide the most highly correlated individual queries (up to 100)
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Bayesian structural time series (with sparse regression)

Outline

Bayesian structural time series (with sparse regression)
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Bayesian structural time series (with sparse regression)

Structural time series models

State space form

There are two pieces to a structural time series model

Observation equation

Vi = ZtToct + € et ~ N (0, Hy)

> y; is the observed data at time t.
» Z: and H; are structural parameters (partly known).
» «; is a vector of latent variables called the “state”.

Transition equation

ary1 = Trop + Ry ne ~ N (0, Q)

» T:, R:, and Q; are structural parameters (partly known).
» 7 may be of lower dimension that «;.
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Bayesian structural time series (with sparse regression)

Structural time series models are modular

Add your favorite trend, seasonal, regression, holiday, etc. models to the mix

State Vector Z, T,
_ . ‘
— Trend

—— Seasonal

a —— Regression D 77777777777777777777777777 D
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Bayesian structural time series (with sparse regression)

A good default model

The model with S seasons can be written

T
ye= pt + v+ B'xt +er
~—~ ~—~ ——
trend  seasonal  regression

foe = pe—1 + Op—1 + Uy

Ot = Op—1 + V¢
S-1

Yt = —Z’Yt—s + wy
s=1

This is the “basic structural model” with an added regression effect.

> Trend: “level” u: + “slope” d;.
» Seasonal: S — 1 dummy variables with time varying coefficients.
Sums to zero in expectation.
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Bayesian structural time series (with sparse regression)

MCMC

» The model parameters are 0 = {0, 0,,0,,0u, B}

» The state is o« = {aq,...,an}.

» MCMC algorithm:
» Draw « given y, 6
» Kalman filter “forward filter - backward sampler”
[Carter and Kohn(1994)], [Friihwirth-Schnatter(1995)],
[de Jong and Shepard(1995)], [Durbin and Koopman(2002)].
» Draws « directly

» Draw 0 given a.

> Given a, then [o.],[0v], [ow], [B, o] are conditionally independent.
> Independent priors on the time series ¢’s. Boring.
> “Spike and slab” prior on .
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Bayesian structural time series (with sparse regression)

The “lasso prior” is not sparse

It induces sparsity at the mode, but not in the posterior distribution
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Bayesian structural time series (with sparse regression)

Spike and slab priors
[George and McCulloch (1997)]

» We think most elements of 5 are zero.
> Let’yjzlifﬁj;éOand'yj:OifBj:O.
v=[1]ofo[1]+[1]o]o]

» Now factor the prior distribution

p(B,7,072) = p(Bylv, o)p(?17)p(7)

)=
v HWWJ - K “Spike”
-1 [
B,ly, 0% Y <b7,a @)™ Slab
% ~T <dzf, 525) does not depend on
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Bayesian structural time series (with sparse regression)

Prior elicitation

mj = “expected model size” / number of predictors
b =0 (vector)
Q! = k{aX"X + (1 — a)diagX"X}/n

ss/df = (1 — Rezxpected)s)%
df =1

» The Q1 expression is x observations worth of prior information.
> It can help to average Q7! with its diagonal.

» Prior elicitation is 4 numbers: expected model size, expected R?, beta
weight (k), and sigma weight (df).
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Bayesian structural time series (with sparse regression)

MCMC for spike and slab regression

For each variable j, draw ~;|v_;,y.

1,1
QY2 p(y)
V2 ss 7t

vy ~ C(y)

» Each 7; only assumes the values 0 or 1.

» Vj is the posterior variance of model ~.

» 55, is a “sum of squares,” whose expression | will spare you.

> A || X |y| matrix needs to be inverted to compute p(v|y). Cheap! (if

there are lots of 0’s).
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Bayesian structural time series (with sparse regression)

Section summary

The following steps comprise one MCMC iteration:

» Draw state given model parameters and y.

v

Draw state component parameters given a.

Loop over j, drawing each 7|y, y, a (but integrating out § and o).
Draw § and o given v, a and y.

Repeat for many iterations.

v

v

Comment: The discussion here is about “predicting the present” but
time series models with many contemporaneous predictors

arise frequently.

Google

Steven L. Scott Hal R. Varian (Google) Predicting the present November 22, 2013 16 / 29



Examples

Outline

Examples
Initial Claims
Retail Sales
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Examples Initial Claims
Posterior inclusion probabilities
With expected model size = 3, and the top 100 predictors from correlate

plot(model, "coef", inc = .1)

unemployment.office
» Only showing inclusion
filing.for.unemployment probab”ities < 1
» Shading shows
idaho.unemployment Pr(ﬁj > O|y)
» White: positive
sirius.internet.radio CoeffICIentS .
» Black: negative
coefficients
sirius.internet
T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Inclusion Probability GO Ugle
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Examples Initial Claims

What got chosen?

plot (model, "predictors", inc = .1)

Lol — 1 unemployment.office
- 0.94 filing.for.unemployment
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@ 7 . .
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Examples

How much explaining got done?

Dynamic distribution plot shows evolving pointwise posterior distribution of state

components.

plot(model, "components")

trend

distribution
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Examples Initial Claims

Did it help?

CompareBstsModels(list("pure time series" =
"with Google Trends"
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modell,
= model2))

> Plot shows cumulative
absolute
one-step-ahead
prediction error

> The regressors are not
very helpful during
normal times.

» They help the model to
quickly adapt to the
recession.
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Examples Retail Sales

Retail Sales (excluding food services, deseasonalized)

This example incudes query verticals in addition to Correlate queries.
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Examples  Retail Sales

The regression component captures the big disruption

trend regression
© ©
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Examples Retail Sales

Which predictors are important?

Out of 100 Correlate queries and 100+ “economically relevant” vericals

X.Real.Estate.Home.Financing
X.Society.Social.Services.Welfare...Unemployment
X.Entertainment.Movies.Movie.Rentals...Sales
X.Beauty...Personal.Care.Weight.Loss
X.Computers...Electronics.Electronics...Electrical
X.Real.Estate.Rental.Listings...Referrals
msn.horoscope
X.Shopping.Apparel.Watches...Accessories
www.adam4adam
X.Automotive.Vehicle.Brands.Mazda
X.Business.Business.Schools...Training
X.Real.Estate.Home.Insurance
X.Automotive.Hybrid...Alternative.Vehicles
X.Automotive.Off.Road...Recreational.Vehicles
X.Automotive.Motorcycles
X.Automotive.Vehicle.Brands.Nissan
X.Finance...Insurance.Insurance
wellsfargocom
X.Automotive.Vehicle.Brands.Chevrolet

Steven L. Scott Hal R. Varian (Google)

» 24 auto verticals

» 61% of iterations
included > 1
auto vertical.
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Examples Retail Sales

Strong partial correlations beat strong correlations
The top two predictors aren't highly correleated, but have “shocks” in the right places.
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Examples Retail Sales

Fun with variable selection

Hot Searches Interest over time
Top Charts New! The number 100 represents the peak search interest Forecast
Explore

Search terms

+ Add term
Limit to
Note
Web Search 2005 2007 2008 2011 2013
United States Embed

2004 - present

Scientific
Equipment Related terms

» With the full model the most important variable was the vertical for
“Scientific Equipment”
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Conclusions

Outline

Conclusions
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Conclusions

Conclusions

v

Google Trends and Google Correlate give nearly real time predictors
showing public interest in a wide variety of topics.

» Prediction is easy when nothing is changing. Gaussian process
handles slow changes. Google trends data helps describe sudden
changepoints.

» There's lots of them (even after aggregation). Some should obviously
be included/excluded. Some are not so obvious. Average the models.

» A similar “spike and slab” trick can be used to select the time series
state components as well.
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Conclusions
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