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Nowcasting
Maintaining “real time” estimates of infrequently observed time series.
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I US weekly initial claims
for unemployment.

I Recession leading
indicator.

I Can we learn this week’s
number before it is
released?

I We’d need a real time
signal correlated with
the outcome.

Steven L. Scott Hal R. Varian (Google) Predicting the present November 22, 2013 2 / 29



Outline

Google Trends and Google Correlate

Bayesian structural time series (with sparse regression)

Examples
Initial Claims
Retail Sales

Conclusions

Steven L. Scott Hal R. Varian (Google) Predicting the present November 22, 2013 3 / 29



Google searches are a real time indicator of public interest



Google searches are a real time indicator of public interest



Google Trends and Google Correlate

Individual search queries
Google correlate can provide the most highly correlated individual queries (up to 100)
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Bayesian structural time series (with sparse regression)

Structural time series models
State space form

There are two pieces to a structural time series model

Observation equation

yt = ZT
t αt + εt εt ∼ N (0,Ht)

I yt is the observed data at time t.
I Zt and Ht are structural parameters (partly known).
I αt is a vector of latent variables called the “state”.

Transition equation

αt+1 = Ttαt + Rtηt ηt ∼ N (0,Qt)

I Tt , Rt , and Qt are structural parameters (partly known).
I ηt may be of lower dimension that αt .
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Bayesian structural time series (with sparse regression)

Structural time series models are modular
Add your favorite trend, seasonal, regression, holiday, etc. models to the mix

Z
t

T
tState Vector

Trend

Seasonal

Regression
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Bayesian structural time series (with sparse regression)

A good default model

The model with S seasons can be written

yt = µt︸︷︷︸
trend

+ γt︸︷︷︸
seasonal

+ βTxt︸ ︷︷ ︸
regression

+εt

µt = µt−1 + δt−1 + ut

δt = δt−1 + vt

γt = −
S−1∑
s=1

γt−s + wt

This is the “basic structural model” with an added regression effect.

I Trend: “level” µt + “slope” δt .

I Seasonal: S − 1 dummy variables with time varying coefficients.
Sums to zero in expectation.
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Bayesian structural time series (with sparse regression)

MCMC

I The model parameters are θ = {σε, σu, σv , σw , β}.
I The state is α = {α1, . . . , αn}.

I MCMC algorithm:
I Draw α given y, θ

I Kalman filter “forward filter - backward sampler”
[Carter and Kohn(1994)], [Frühwirth-Schnatter(1995)],
[de Jong and Shepard(1995)], [Durbin and Koopman(2002)].

I Draws α directly

I Draw θ given α.
I Given α, then [σu], [σv ], [σw ], [β, σε] are conditionally independent.
I Independent priors on the time series σ’s. Boring.
I “Spike and slab” prior on β.
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Bayesian structural time series (with sparse regression)

The “lasso prior” is not sparse
It induces sparsity at the mode, but not in the posterior distribution

p(β) ∝ exp

−∑
j

|βj |


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Bayesian structural time series (with sparse regression)

Spike and slab priors
[George and McCulloch (1997)]

I We think most elements of β are zero.

I Let γj = 1 if βj 6= 0 and γj = 0 if βj = 0.

������������
0 0 1 0 011γ =

I Now factor the prior distribution

p(β, γ, σ−2) = p(βγ |γ, σ2)p(σ2|γ)p(γ)

γ ∼
∏
j

π
γj
j (1− πj)1−γj

“Spike”

βγ |γ, σ2 ∼ N
(
bγ , σ

2
(
Ω−1
γ

)−1
)

“Slab”

1

σ2
∼ Γ

(
df

2
,
ss

2

)
does not depend on γ
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Bayesian structural time series (with sparse regression)

Prior elicitation

πj = “expected model size” / number of predictors

b = 0 (vector)

Ω−1 = κ{αXTX + (1− α)diagXTX}/n
ss/df = (1− R2

expected)s2
y

df = 1

I The Ω−1 expression is κ observations worth of prior information.

I It can help to average Ω−1 with its diagonal.

I Prior elicitation is 4 numbers: expected model size, expected R2, beta
weight (κ), and sigma weight (df ).
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Bayesian structural time series (with sparse regression)

MCMC for spike and slab regression

For each variable j , draw γj |γ−j , y.

γ|y ∼ C (y)
|Ω−1

γ |
1
2

|V−1
γ |

1
2

p(γ)

SS
DF
2
−1

γ

I Each γj only assumes the values 0 or 1.

I Vj is the posterior variance of model γ.

I SSγ is a “sum of squares,” whose expression I will spare you.

I A |γ| × |γ| matrix needs to be inverted to compute p(γ|y). Cheap! (if
there are lots of 0’s).
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Bayesian structural time series (with sparse regression)

Section summary

The following steps comprise one MCMC iteration:

I Draw state given model parameters and y.

I Draw state component parameters given α.

I Loop over j , drawing each γj |γ−j , y, α (but integrating out β and σε).

I Draw β and σ given γ, α and y.

Repeat for many iterations.

Comment: The discussion here is about “predicting the present” but
time series models with many contemporaneous predictors
arise frequently.
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Examples Initial Claims

Posterior inclusion probabilities
With expected model size = 3, and the top 100 predictors from correlate

plot(model, "coef", inc = .1)

sirius.internet

sirius.internet.radio

idaho.unemployment

filing.for.unemployment

unemployment.office

Inclusion Probability

0.0 0.2 0.4 0.6 0.8 1.0

I Only showing inclusion
probabilities < .1.

I Shading shows
Pr(βj > 0|y).

I White: positive
coefficients

I Black: negative
coefficients
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Examples Initial Claims

What got chosen?

plot(model, "predictors", inc = .1)
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I Solid blue line:
actual

I Remaining lines
shaded by inclusion
probability.
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Examples Initial Claims

How much explaining got done?
Dynamic distribution plot shows evolving pointwise posterior distribution of state
components.

plot(model, "components")
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Examples Initial Claims

Did it help?

CompareBstsModels(list("pure time series" = model1,

"with Google Trends" = model2))
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I Plot shows cumulative
absolute
one-step-ahead
prediction error

I The regressors are not
very helpful during
normal times.

I They help the model to
quickly adapt to the
recession.
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Examples Retail Sales

Retail Sales (excluding food services, deseasonalized)
This example incudes query verticals in addition to Correlate queries.
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Examples Retail Sales

The regression component captures the big disruption
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Examples Retail Sales

Which predictors are important?
Out of 100 Correlate queries and 100+ “economically relevant” vericals

X.Automotive.Vehicle.Brands.Chevrolet

wellsfargocom

X.Finance...Insurance.Insurance

X.Automotive.Vehicle.Brands.Nissan

X.Automotive.Motorcycles

X.Automotive.Off.Road...Recreational.Vehicles

X.Automotive.Hybrid...Alternative.Vehicles

X.Real.Estate.Home.Insurance

X.Business.Business.Schools...Training

X.Automotive.Vehicle.Brands.Mazda

www.adam4adam

X.Shopping.Apparel.Watches...Accessories

msn.horoscope

X.Real.Estate.Rental.Listings...Referrals

X.Computers...Electronics.Electronics...Electrical

X.Beauty...Personal.Care.Weight.Loss

X.Entertainment.Movies.Movie.Rentals...Sales

X.Society.Social.Services.Welfare...Unemployment

X.Real.Estate.Home.Financing

Inclusion Probability

0.0 0.2 0.4 0.6 0.8 1.0

I 24 auto verticals

I 61% of iterations
included ≥ 1
auto vertical.
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Examples Retail Sales

Strong partial correlations beat strong correlations
The top two predictors aren’t highly correleated, but have “shocks” in the right places.
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Examples Retail Sales

Fun with variable selection

I With the full model the most important variable was the vertical for
“Scientific Equipment”
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Conclusions

Conclusions

I Google Trends and Google Correlate give nearly real time predictors
showing public interest in a wide variety of topics.

I Prediction is easy when nothing is changing. Gaussian process
handles slow changes. Google trends data helps describe sudden
changepoints.

I There’s lots of them (even after aggregation). Some should obviously
be included/excluded. Some are not so obvious. Average the models.

I A similar “spike and slab” trick can be used to select the time series
state components as well.
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